Многогранники шаблоны для склеивания. Икосаэдр развертка для склеивания с припусками: как собрать бумажный икосаэдр

Содержание

Как сделать пирамиду из бумаги. Схема с размерами, пошаговая инструкция с фото

Многогранники шаблоны для склеивания. Икосаэдр развертка для склеивания с припусками: как собрать бумажный икосаэдр

Если вас интересует, как сделать идеальную по формам и граням пирамиду из бумаги существует определенная схема с размерами, чтобы в итоге получилась правильная фигура. Бумажная пирамида может быть оригинальным подарком, сделанным своими руками или просто интересной поделкой.

Как сделать пирамиду из бумаги. Пошаговая инструкция

Благодаря древнему мастерству оригами есть возможность воссоздавать практически любую фигуру из бумаги, в том числе и пирамиду. Существует несколько способов, как создать идеальную фигуру с четкими гранями. Для новичков в этом деле есть легкий пошаговый совет, как сделать фигуру из картона. Данная инструкция будет понятна как взрослым, так и детям.

Пошаговое руководство, как склеить пирамиду из картона:

  1. На бумажном листе нужно нарисовать один ровный квадрат и три треугольника. Каждая сторона квадрата должна быть примерно 15 см. Ширину треугольника стоит сделать такой же, а высоту 27 см.
  2. Ножницами вырезать заготовки не по контуру, а с отступом 3-4 мм, в дальнейшем это будет необходимо при склеивании фигуры.
  3. Смазать клеем все части, дать ему немного подсохнуть и сложить все детали в единую конструкцию.
  4. Дать полностью высохнуть поделке и можно приступить к декору.

Как украсить пирамиду — может быть любая воля фантазии. Например, на нее можно наклеить фигурки, обмотать фольгой или раскрасить специальными акриловыми красками.

Материалы и приспособления

Как сделать пирамиду из бумаги схема с размерами – не единственные главные составляющие в изготовлении фигуры.

Для удобства выполнения оригами следует заранее подготовить необходимые материалы и приспособления, чтобы в момент работы все они были под рукой:

  • Для изготовления граней могут понадобиться различные материалы. Задействовать можно не только картон, но и пластик, металл, фанеру, стекло или сделать каркас из проволоки. Если фигура создана с каким-либо эзотерическим посылом, то бумажную пирамиду советуется изнутри обклеить фольгой. Это нужно для того чтобы в фигуре накапливалась и не рассеивалась положительная энергия. Если внутрь пирамиды поместить несколько небольших магнитов, то изделие будет обладать магнитной энергией.
  • Для поделки стоит обзавестись качественным клеем, который можно купить в канцелярском магазине.
  • Пригодятся острые ножницы, чтобы вырезать ровные заготовки для будущей фигуры.
  • Также нужны будут линейка, карандаш и ластик на всякий случай.

Для выполнения фигуры не требуется много материалов, все приспособления для пирамиды найдутся почти в каждом доме.

Определяем параметры

Чтобы изделие получилось аккуратным и красивым стоит задать четкие параметры при изготовлении заготовок для будущей пирамиды. Для каждой части может понадобиться отдельный лист бумаги. Можно скачать уже готовые схемы, но их также просто нарисовать самостоятельно.

Главное знать, что ширина треугольника должна быть равна каждой длине грани квадрата.

Высоту геометрической фигуры можно выбрать любую, но рекомендуемая длина, чтобы она была больше на 10-15 см ширины заготовки. Именно при таком соотношении фигура будет смотреться гармонично.

Строим чертеж

Чтобы было проще узнать, как сделать идеальную пирамиду из бумаги или каких-либо других материалов существует схема с размерами. Чертеж – основа для дальнейшего склеивания компонентов для будущей цельной фигуры. Существует несколько видов пирамид, для каждой из них свой чертеж.

Но есть один простой способ, который подходит для детей и новичков в этом деле:

  1. В основании пирамиды должен быть правильный многоугольник, с проходящий высотой через его центр. Заранее стоит определить размеры пирамиды, для каждого они могут быть индивидуальны.
  2. Нужно нарисовать четыре квадрата, три из них будут нужны для треугольников.
  3. На одной из боковых сторон нужно определить середину линии. От двух углов основания следует провести две линии в отмеченную точку, чтобы получилась вершина пирамиды.
  4. Заготовки равнобедренных треугольников нужно будет соединить с квадратом с помощью специальных отступов. Стоит не забыть, что вырезать заготовки нужно прибавив к их краям полсантиметра для того чтобы было удобно склеить фигуру.

Завершение моделирования

Вырезанную фигуру, нужно склеить по линиям сгибов. Перед тем как соединить части в полную модель на сгибы нужно нанести клей и немного оставить его застыть, чтобы он лучше схватился. После того как изделие будет готово следует его оставить на полчаса, чтобы потом при оформлении оно случайно не расклеилось. В завершающий этап моделирования входит дизайнерское оформление работы.

Можно разукрасить пирамиду акриловыми или мерцающими красками, нарисовать на ней фигуры.

Изделие можно обклеить фольгой или бумагой для подарков. Также для тех, кто верит в мистическую силу пирамиды стоит на нее приклеить натуральные камни, которые будут подходить под знак зодиака того, кому будет подарена данная фигура. В детском варианте пирамиду можно превратить в животное, приклеив к ней ушки, хвостик и нарисовать черты мордочки.

Способ 2

Такая схема пирамиды подразумевает использование готовой заготовки, которую можно скачать и распечатать на принтере. Этот вариант самый простой, так как не придется чертить фигуры самостоятельно. Главное подготовить все необходимые инструменты и оригинально украсить изделие на этапе декорирования.

Способ 3

Существует достаточно много советов, как сделать пирамиду из бумаги, определенная схема с размерами является неотъемлемой частью в выполнении оригами:

  1. Квадратный лист сложить, чтобы углы лежали противоположно друг к другу, лишнюю бумагу отрезать ножницами. Таким способом можно сделать ровный квадрат.
  2. Заготовку свернуть по одной диагонали, раскрыть и свернуть по другой и снова развернуть. Так намечаются нужные линии.
  3. Взять половинки квадрата, свернуть из него треугольник в два слоя. К центру свернуть два угла от основания. Аналогично повторить со второй стороны фигуры.
  4. Согнуть уголки к центру с одной стороны и с другой.
  5. Разогнуть ромб с каждой стороны, уголки его направить внутрь.
  6. Пирамиду нужно выгнуть так чтобы получилась звезда с четырьмя гранями. Фигуру взять двумя руками за разные концы и придать ей форму.

Постепенно придавая объекту форму, начнет получаться пирамида. Очень важно знать, что на последнем этапе нужно действовать аккуратно, стараясь не порвать случайно поделку.

Способ 4

Необходимые инструменты для поделки:

  • бумажный лист,
  • треугольник,
  • ножницы,
  • карандаш,
  • клей,
  • ластик.

Выполнение:

  1. Вырезать квадрат. Согнуть заготовку пополам в разные стороны, чтобы образовались складки.
  2. Диагональ треугольника приложить к каждой из сторон квадрата и по сгибам сделать отметки.
  3. При помощи линий соединить треугольник с вершинами. Для точности рекомендуется использовать линейку.
  4. Отметить карандашом линии склейки сторон.
  5. Фигуру вырезать и нанести клей на линии склеивания.

Как сделать пирамиду из картона?

Сделать фигуру из картона своими руками можно быстро и просто. Использовать можно любую расцветку бумаги, но лучше всего подойдет цвет золота, бежевый, светло-коричневый.

Для того чтобы изделие выглядело более реалистично, то по бумажной заготовке можно произвести линии иголкой горизонтальные и вертикальные.

Благодаря этому будет создаваться эффект реальной мини-пирамиды из Гизы.

По вышеперечисленным пошаговым способам можно создать фигуру с гранями. Картонная пирамида делается по такому же принципу как из простой бумаги.

Но есть большой плюс, что ее можно украсить, например сахарным песком:

  • Изделие можно покрыть полностью прозрачным клеем и нанести на него сахарный песок. Таким способом можно создать интересный сияющий эффект.
  • Также пирамиду можно посыпать песком, предварительно обмазав ее клеем. Фигура приобретет эффект реалистичности.

«Золотое сечение» в пропорциях пирамиды

Эталон идеальной пирамиды – определенные правильные пропорции. Ключом к созданию правильной фигуры лежит коэффициент и цифры 7,23. Число, которое имеет значение в науке математике и геометрии, также эти цифры важны в архитектуре и даже медицине.

Отрезок длиной 7,23 нужно умножить на коэффициент 1,618. Полученное число 116, 981 следует округлить до 117 см. Эта длина является основанием пирамиды.

Также для получения больших моделей данное число можно умножать в несколько раз. Таким образом, длина нашей пирамиды получается 117 мм, а высота 72 мм.

По теореме Пифагора можно определить длину граней треугольника. Получится число 92,769, его нужно округлить до 93. Эти данные подстроены под идеальную пропорцию «Золотого сечения».

Как сделать развертку четырехугольной пирамиды?

Для изготовления четырехугольной фигуры потребуется:

  • плотная бумага или картон,
  • простой карандаш,
  • линейка,
  • ножницы,
  • клей.

Этапы:

  1. Для начала нужно сделать выкройку, в которой основание будет 8 см, а высота 6,5 см.
  2. На листе бумаги нужно нарисовать ровный квадрат, отметить на каждой его грани середину.
  3. Провести из средних точек линии перпендикулярно квадрату, длиной 6,5 см — их всего должно получиться 4.
  4. Из каждой вершины провести по две линии к углам квадрата, так чтобы получились треугольники.
  5. Вырезать заготовку и сложить треугольники так чтобы они сошлись в единую вершину. Склеить фигуру.

Четырехугольную фигуру несложно изготовить самостоятельно. Также на основе этой пошаговой инструкции можно создавать пирамиды больше по размерам.

Как выполнить развертку правильной пирамиды?

Чтобы понимать как сделать пирамиду из бумаги, необходимо знать схему с размерами.

Если интересно как сделать пирамиду с разверткой из бумаги, существует не одна схема с размерами, которая поможет правильно выполнить фигуру.

В момент проектирования развертки за основу берется правильный треугольник. Боковая поверхность представлена как плоский чертеж, состоящий из граней и многоугольника.

Для начала определяется натуральная величина основания и истинная величина всех ребер (можно произвести при помощи циркуля). После того как три стороны были найдены строится основание и боковая грань. Берется произвольная точка и из нее проводится дуга равная длине боковых ребер заготовки. На дуге отмечаются четыре отрезка, равные основанию пирамиды.

Все линии соединяются, в том числе с произвольной точкой. К одному из получившихся треугольников пририсовывают квадрат, который равен основанию фигуры.

Сложные фигуры: объемные макеты

Фигуры такого типа делаются для получения навыков в работе с объемными изделиями из бумаги и в целях обучения детей начальным азам геометрии. Из таких моделей можно смастерить оригинальную подарочную упаковку. Иногда бывает сложно разработать правильную развертку, рекомендуется обладать хотя бы небольшими знаниями черчения.

Носуществуют готовые трафареты, которые можно будет распечатать с принтера. Макеты используются не только в развлекательных целях, но и в обучающих. Ребенку можно наглядно показывать, как выглядит та или иная фигура. Сложные модели могут быть: куб, октаэдр, додекаэдр, икосаэдр и другие.

Перед тем как начать выполнять черчение фигуры стоит представить ее в 3D формате, сколько она имеет граней и измерений.

На листе бумаги нужно нарисовать грани, так чтобы они между собой правильно соединялись. У каждой фигуры есть свой определенный тип грани. Ребра тоже должны быть одинаковой длины, чтобы при скреплении не появились несостыковки. Если макет имеет одинаковые стороны, то в момент черчения можно нарисовать шаблон и по нему рисовать остальные заготовки.

3D макеты важны при обучении детей: они дают ученикам возможность подержать фигуры в руках, рассмотреть их и лучше понять строение. Также при изучении некоторых теорем (Эйлера) рекомендуется наглядное пособие.

Моделирование различных многогранников

Чтобы научиться выполнять более сложные модели, стоит начать с азов, например, с 3D треугольников. Постепенно улучшая навык в создании простых макетов можно приступить к сложным моделям. Сложные фигуры требуют навыков и отточенной сноровки при выполнении, например в момент развертки или придавания формы фигуре, нужно действовать так чтобы она случайно не порвалась.

При выполнении чертежа следует внимательно наносить разметки и уметь рисовать фигуры.

Если есть вопрос, как сделать качественную пирамиду из бумаги, существует подробная схема с индивидуальными размерами. Стоит лишь приложить немного усилий, и тогда составит труда выполнить красивую и качественную работу, которая будет радовать глаз.

Благодаря вышеперечисленным способам можно легко создать различные макеты пирамид. Не сложно научиться выполнять эти техники, главное соблюдать все этапы постепенно и внимательно.

о том, как сделать пирамиду из бумаги

Как сделать пирамиду из бумаги, узнайте в видео-ролике:

Схема выполнения объемной пирамиды:

Разузнай! – Додекаэдр – Как сделать правильный додекаэдр своими руками – Как сделать звездчатый додекаэдр – Разузнай!

Многогранники шаблоны для склеивания. Икосаэдр развертка для склеивания с припусками: как собрать бумажный икосаэдр

Додекаэдром называется правильный многогранник, составленный из двенадцати правильных пятиугольников. Эта эффектная объемная фигура обладает центром симметрии, называемым центром додекаэдра.

Кроме того, в ней присутствуют пятнадцать плоскостей симметрии (в каждой грани любая из них проходит через середину противоположного ребра и вершину) и пятнадцать осей симметрии (пересекающих середины параллельных противолежащих ребер).

Каждая из вершин додекаэдра является вершиной трех пятиугольников правильной формы.

Свое название конструкция получила по количеству входящих в нее граней (традиционно древние греки давали многогранникам имена, отображающие число граней, составляющих структуру фигуры). Таким образом, понятие «додекаэдр» образовано из значений двух слов: «додека» (двенадцать) и «хедра» (грань).

Фигура относится к одному из пяти Платоновых тел (наряду с тетраэдром, октаэдром, гексаэдром (кубом) и икосаэдром).

Интересно, что согласно многочисленным историческим документам, все они активно использовались жителями Древней Греции в виде настольных игральных костей и изготавливались из самого различного материала.

Правильные многогранники всегда привлекали людей своей красотой, органичностью и необыкновенным совершенством форм, но додекаэдр имеет особую историю, которая из года в год обрастает все новыми, иногда совершенно мистическими, фактами.

Представители многих цивилизаций усматривали в нем сверхъестественную и таинственную сущность, утверждая, что: «Из числа двенадцать произрастает многое». На территориях древних разрушенных государств до сих пор находят маленькие фигурки в виде додекаэдров, выполненные из бронзы, камня или кости.

Кроме того, при раскопках на землях современной Англии, Франции, Германии, Венгрии, Италии археологи обнаружили несколько сотен так называемых «римских додекаэдров», датирующихся II-III-м веками нашей эры. Основные размеры фигурок составляют от четырех до одиннадцати сантиметров, причем отличаются они самыми невероятными узорами, текстурами и техникой исполнения.

Выдвинутая еще во времена Платона версия о том, что Вселенная представляет собой огромного размера додекаэдр, нашла подтверждение уже в начале XXI -го века.

После тщательного анализа данных, полученных при помощи WMAP(многофункционального космического аппарата NASA), ученые согласились с предположением древнегреческих астрономов, математиков и физиков, в свое время занимавшихся вопросами изучения небесной сферы и ее строением. Более того, современные исследователи считают, что наша Вселенная представляет собой бесконечно повторяющийся набор додекаэдров.

Как сделать правильный додекаэдр своими руками 

Сегодня конструкция данной фигуры нашла свое отображение во многих вариантах художественного творчества, архитектуре и строительстве.

Народные умельцы изготавливают из цветной или белой бумаги необыкновенные по красоте оригами в виде ажурных додекаэдров, а из картона делают оригинальные и прочее).

В продаже можно приобрести уже готовые наборы, содержащие все необходимое для изготовления сувениров, но наиболее интересно произвести весь процесс работы своими руками, начиная от построения отдельных деталей и заканчивая сборкой готовой конструкции.

Для того, чтобы сделать правильный додекаэдр из картона, необходим собственно сам материал и подручные средства:

  • ножницы, 
  • карандаш, 
  • ластик, 
  • линейка, 
  • клей. 

Хорошо иметь тупой нож или какое-либо приспособление для загибания припусков, но если их нет, то вполне подойдет металлическая линейка или те же ножницы.

Делаем правильный додекаэдр

    1. Самый первый этап в изготовлении – построение пятиугольника нужного размера. Должен получиться вот такой элемент. Он и станет основой фигуры.
  1. Далее конструируете развертку додекаэдра с учетом припусков на склеивание.

    В результате получится «выкройка» приблизительно такого вида. Варианты могут различаться, если припуски будут другой формы или размещены на других гранях.

  2. Аккуратно по линиям сгибаете припуски.
  3. Склеиваете.

  4. Наносите на готовый додекаэдр нужный рисунок или декорируете другим выбранным способом.

Готово!

Как сделать звездчатый додекаэдр

Звездчатые додекаэдры имеют более сложную конструкцию по сравнению с обычными. Эти многогранники подразделяются на малый (первого продолжения), средний (второго продолжения) и большой (последняя звездчатая форма правильного додекаэдра). Каждый из них отличается своими особенностями построения и сборкой.

Для работы Вам потребуются те же материалы и инструменты, что и для изготовления стандартного додекаэдра.

Если Вы решили сделать первый вариант (малый додекаэдр), то необходимо построить чертеж первого элемента, который станет основой для всей конструкции (в дальнейшем производится ее склеивание или сборка деталей при помощи скрепок).

Делаем звездчатый додекаэдр

  1. Строите схему основной детали нужных размеров с необходимыми припусками. Должен получиться приблизительно такой элемент.
  2. По обозначенным линиям сгибаете, в том числе не забываете о припусках.
  3. Склеиваете каждую деталь по отдельности.
  4. Собираете додекаэдр полностью.
  5. Раскрашиваете или наносите любое из выбранных изображений. 

Готово!

как сделать Додекаэдр:

Представляем Вам некоторые видео как сделать додекаэдр:

И парочку тяжелых, для трудолюбивых..

Вперед!

Геометрические фигуры из бумаги развертки. Как сделать икосаэдр из бумаги

Многогранники шаблоны для склеивания. Икосаэдр развертка для склеивания с припусками: как собрать бумажный икосаэдр

› Все записи

07.10.2019

Всё верно, ошибка тут есть, но она несущественная. Нужно просто одну деталь перевернуть и тогда все стороны сойдутся!

Да зачем их надвое резать было?

Икосаэдр – понятие, свойства и структура двадцатигранника

Многогранники шаблоны для склеивания. Икосаэдр развертка для склеивания с припусками: как собрать бумажный икосаэдр

Используя 30 квадратных листов бумаги (размер каждой стороны 7,5 см), можно сделать довольно крепкую версию одной из разновидности этого геометрического чуда совсем без склеивания. Если в запасе есть материал разного цвета, то получится яркий и красивый макет с разноцветными блоками. Инструкция по изготовлению звездчатого икосаэдра поэтапно:

  • Сложить листок пополам и сделать складку вдоль сгиба. Если используется бумага для оригами, то стоит убедиться, что её лицевая сторона находится снаружи, поскольку она будет видна позже.
  • Развернуть квадрат.
  • Сложить правую и левую стороны листа так, чтобы они встретились в месте сгиба. Должен получиться прямоугольник, больше похожий на шкаф с распашными дверцами.
  • Перевернуть фигуру подогнутыми краями вниз.
  • Сделать диагональную складку: верхний правый угол должен встретиться с левой стороной прямоугольника. Нужно свернуть обе «двери шкафа».
  • Перевернуть бумагу прямым концом вверх.
  • Сделать ещё одну диагональную складку, где верхний правый угол будет встречаться со стороной макета. Должен получиться параллелограмм.
  • Согнуть лист по диагонали там, где верхний угол соответствует правому углу фигуры.
  • Повторить действие с другой стороны. Должны встретиться нижний и левый углы. Получится маленький квадрат.
  • Затем повернуть заготовку так, чтобы фигура напоминала ромб.
  • Сложить квадрат пополам, сделав сгиб, который идёт перпендикулярно «дверцам шкафа», видимым на модели. Итак, первая единица готова.

Всего таких блоков нужно сделать 30. Например, по 10 разного цвета.

Сборка элементов

Теперь самое время собирать блоки вместе. Поверхность звездчатого икосаэдра состоит из нескольких пирамид.

Чтобы было проще, нужно представить этот сложный куб, над которым идёт работа, в виде единственного додекаэдра (12-гранный правильный пятиугольник — ещё одно тело Платона), где каждая из его двадцати вершин будет заменена пирамидой.

Все 30 единиц пойдут на формирование этих 20 пирамид. Ход работы по сборке икосаэдра. Схема поэтапно:

  • Начать нужно с двух блоков (можно разного цвета). Треугольные концы каждой единицы называются «язычками». Квадрат в центре блока содержит «карманы», образованные складкой шкафа, идущей по диагонали. Нужно положить язычок одного блока в карман другого.
  • Затем необходимо взять третий блок и поместить его верхний и нижний язычки в соответствующие карманы двух единиц, которые уже сложены. Должна получиться пирамида.
  • Присоединить следующий блок, положив его язычок во второй (свободный) карман предыдущей единицы.
  • Повторить действие с другой стороны фигуры. Получаются две соседние пирамиды, соединённые между собой.
  • Продолжить собирать модель таким образом, пока не получится 5 пирамид, которые встречаются в одной точке.
  • Повторять действия, следя за тем, чтобы в одной точке не встречалось более пяти пирамид.
  • К концу работы модель должна принять форму, если всё идёт правильно. Последний блок сложный — надо убедиться, что оба его язычка уложены в карманы соседних единиц, а карманы заполнены двумя свободными язычками.

В итоге получится красивая объёмная фигура, а если она сделана из цветной бумаги, то ещё и красочная. Безусловно, если нужно сэкономить время и силы, можно сильно упростить задачу и найти готовый шаблон модели, распечатать развёртку икосаэдра на бумаге и вырезать, оставляя припуски, а затем склеить.

Основные виды

Вообще, эта геометрическая фигура — одно из платоновых тел, известных с древних времён. Их всего пять: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Их определение довольно простое: все они представляют собой многогранники, состоящие из конгруэнтных (одинаковых по форме и размеру) регулярных (все углы равны, как и все стороны) полигональных граней, встречающихся в каждой вершине.

Обычный икосаэдр представлен в двух основных видах, обладающих одинаковыми признаками. У каждого есть 30 рёбер и 20 равносторонних треугольных граней, которые собираются по 5 штук, образуя 12 вершин. Оба имеют икосаэдрическую симметрию, центром которой является точка пересечения всех осевых линий, и называются:

  • Правильный выпуклый икосаэдр. Его представляют символом Шлефли {3, 5}. Можно построить путём пересечения двух многогранников — правильных додекаэдров {5, 3}.
  • Большой икосаэдр. Один из четырёх звездчатых многогранников Кеплер-Пуансо. Как и выпуклая форма, у него также есть 20 равносторонних треугольных граней, но его вершинная фигура является скорее пентаграммой, чем пятиугольником, что приводит к геометрически пересекающимся граням.

Звездчатые формы образуются, когда грани или края многогранника расширяют до тех пор, пока они не встретятся, чтобы сформировать новую фигуру. Это делается таким образом, что сохраняются центр,оси и плоскости симметрии родительской фигуры.

К слову, большой икосаэдр можно отнести к этому виду. У других «звёздочек» есть более одной грани в каждой плоскости или они образуют соединения более простых многогранников. Это не строго икосаэдры, но их часто так называют.

В таблице представлены несколько разновидностей звездчатых тел.

Вид икосаэдра Рисунок
выпуклый
малый триамбический
медиальный (большой) триамбический
соединение пяти октаэдров
соединение из пяти тетраэдров
финальный

Ромбический икосаэдр – выпуклый многогранник, состоящий из двадцати конгруэнтных ромбических граней, четыре или пять из которых встречаются в каждой вершине. Напоминает сплюснутую сферу.

По специальным формулам икосаэдра определяют его размер, площадь и объём. А также есть специальные координаты — декартовы и сферические, с помощью которых описывают расположение вершин многогранника. Построение такой фигуры, чтобы избежать утомительных расчётов, можно проводить с помощью квадратных матриц по системе равносторонних линий. Другие интересные факты:

  • Икосаэдр имеет 43380 различных сетей.
  • Если нужно раскрасить многогранник так, чтобы никакие две смежные грани не были одного цвета, потребуется как минимум три оттенка.
  • Мяч для игры в классический футбол имеет форму усечённого икосаэдра, состоящего из 20 правильных шестиугольников и 12 правильных пятиугольников.

Икосаэдр имеет три специальных ортогональных проекции, центрированных на грани, ребре и вершине. Фигура также может быть представлена в виде сферической мозаики и спроецирована на плоскость через стереографическую проекцию.

Природные формы и использование

Многие микроорганизмы, в том числе вирусы, имеют икосаэдрические оболочки. Их структуры построены из повторяющихся идентичных белковых субъединиц, и икосаэдр является самой лёгкой формой для их сборки.

Используется обычный тип многогранника, поскольку он может быть построен из одного базового белка, который будет использоваться снова и снова. Это очень упрощает жизнь и экономит место в вирусном геноме.

А также были обнаружены различные органеллы бактериальной клетки с икосаэдрической формой. В 1904 году Эрнст Геккель описал ряд видов радиолярий, чей скелет имеет форму и свойства многогранника. Икосаэдрическое двойникование также происходит в кристаллах, особенно в наночастицах.

К другим примерам того, как природа использует такую структуру для достижения многих целей, можно отнести инклюзионные тела — компартменты, которые образуются внутри клеток, обычно во время некоторых фаз роста или в определённых условиях окружающей среды.

Использование икосаэдров для разделения пространства и контроля доступа очень эффективно и, по-видимому, предпочтительно, когда ресурсы организмов ограничены.

В древности игральные кости имели столько сторон, сколько граней в икосаэдре. Такие двадцатигранные кубики могли быть пронумерованы от 0 до 9 дважды или от 1 до 20.

Форма правильных многогранников часто используется для создания различных предметов в компьютерных играх и головоломках. В виртуальном мире, кстати, часто можно встретить и другие геометрические тела.

Например, в «Супер Марио Галактике» планеты имеют форму, похожую на ромбоусечённый икосододекаэдр — архимедово тело.

Японский картограф Содзи Садао и американский архитектор Ричард Бакминстер Фуллер разработали карту мира в виде развёрнутого икосаэдра. Этот же многогранник лежит в основе геодезических сеток, которыми пользуются метеорологи и климатологи.

Оригами додекаэдр

Многогранники шаблоны для склеивания. Икосаэдр развертка для склеивания с припусками: как собрать бумажный икосаэдр

Одной из простейших бумажных кусудам считается додекаэдр-оригами. Но это не значит, что он выглядит неэффектно, особенно когда речь идёт о звёздчатой разновидности.

Декоративный многогранник, подобно другим своим родственникам – кусудамам, отлично подходит для праздничного украшения помещений или в качестве оригинального подарка.

Мини-додекаэдры можно использовать как модные украшения, сделав из них серьги или кулон.

Ажурная модель

Существует несколько типов оригами-додекаэдров, но сделать эту прозрачную конструкцию из бумажных модулей проще всего. Хорошее задание для детей, желающих познакомиться с азами пространственной геометрии и взрослых, ищущих эффективное средство для снятия стресса. Желательно использовать для игрушки бумагу ками с рисунком, она придаст особый шарм и колорит.

Пошаговая инструкция:

  1. Для создания кусудамы понадобится 30 одинаковых модулей. Их складывают из прямоугольников, имеющих соотношение сторон 3:4. Например, размером 6х8 см, 9х12 см и так далее. Можно брать как одно-, так и двухсторонние листы.
  2. Складываем каждый прямоугольник пополам вдоль длинной стороны. После чего делаем Z-образный сгиб.
  3. Располагаем получившуюся полоску длинной стороной к себе. Загибаем правый нижний угол вверх. Переворачиваем заготовку на 180°. И повторяем действие для правого нижнего угла (другого).
  4. Складываем фигуру по диагонали, как показано на рис 4.
  5. Модули для додекаэдра-кусудамы готовы.

Остаётся соединить их в пространственную композицию. Для этого короткую часть одного модуля вставляем к «карман» длинной части другого. И располагаем так, чтобы внутренние углы и грани обоих элементов совпали.

Аналогичный образом добавляем третий модуль, соединяя его с предыдущими двумя и формируя устойчивый конструктивный узел.

Продолжаем крепить детали друг к другу, пока не получится объёмная фигура.

За счёт необычной бумаги с принтом, получается стильный предмет декора. Чтобы кусудама не распадалась, лучше соединить узловые элементы с помощью клея.

Подробная сборка ажурного додекаэдра представлена и в видео-МК:

Кусудама из правильных пятиугольников

Схема сборки додекаэдра-оригами из пентагонов – равносторонних пятиугольников, разработана американским дизайнером Дэвидом Брилом. Для модулей он использует 12 листов формата А6, то есть 10,5х14,8 см.

Пошаговая инструкция:

  1. Исходный прямоугольник складываем пополам в продольном и поперечном направлении, намечая серединные оси.
  2. Правый верхний и левый нижний угол сгибаем к центру. Получаем своего рода полуконверт.
  3. Аналогично складываем противоположные углы.
  4. Пятиугольную заготовку, «закрываем» сверху вниз «долиной».
  5. Верхний угол опускаем вниз и возвращаем обратно. На месте пересечения получившейся линии с вертикальной осью фигуры, образуется точка. К ней поочерёдно сгибаем внешние углы.
  6. Модуль-пентагон готов. Последние два сгиба раскрываем – это будут детали крепления элементов между собой.
  7. Боковые «ушки» одной детали вставляем в «карманы» другой. Места соединения для надёжности фиксируем клеем.
  8. Продолжаем сборку, пока не используем все 12 модулей.

Из подобных додекаэдров часто делают настольные календари. На каждой грани как раз размещается по месяцу. Соответствующие распечатки с числами и днями недели, можно скачать из интернета и наклеить на стенки модели. Получится не только красиво, но и практично.

Додекаэдр-звезда

Правильные звёздчатые многогранники относятся к самым красивым геометрическим фигурам. С момента своего открытия в XVI веке, они считались символом совершенства Вселенной.

Малый звёздчатый додекаэдр впервые построил немецкий астроном и математик Иоганн Кеплер – создатель знаменитой теории о строении Солнечной системы.

Многогранник имеет собственное имя: Арур Кэли, в честь английского учёного, сделавшего огромный вклад в развитие линейной алгебры.

Малый звёздчатый додекаэдр-оригами представляет собой фигуру из 12 граней-пентаграмм, с пятью пентаграммами, сходящимися к вершинам. Он состоит из 30 модулей, которые складываются из квадратов, размером 8х8 см. Лучше всего использовать профессиональную бумагу-оригами, которая позволит создавать чёткие грани и жёсткие узлы, не позволяющие конструкции распадаться или деформироваться.

Интересные факты о додекаэдре

Правильные многогранники с древних времен восхищали человечество и служили прообразом мирового устройства. Как оказалось, подобные представления небезосновательны. В 2003 году, анализируя данные исследовательского аппарата WMAP, запущенного NASA для изучения фоновых космических излучений, учёные выдвинули гипотезу о додекаэдрическом строении Вселенной по принципу сферы Пуанкаре.

Нечто подобное предполагал и живший в V в. до н. э. древнегреческий философ Платон. В своём учении о классических стихиях, он назвал додекаэдр «образцом божественного устройства Космоса». Вообще же все пять известных правильных многогранников до сих пор называют Платоновыми телами, по имени мыслителя, впервые выстроившего с их помощью чёткую картину мироздания.

Пентагон, лежащий в основе додекаэдра, построен на принципах «золотого сечения». Эта пропорция, которую древние греки считали «божественной» часто встречается в природе. Интересно, что соотношения «золотого сечения» присущи лишь додекаэдру и икосаэдру, у трёх других Платоновых тел его нет.

Игрушки древних римлян

На территориях Европы, некогда принадлежавших Римской империи, до сих пор находят загадочные бронзовые фигурки в форме додекаэдра. Предметы пустотелые, с круглыми отверстиями на каждой стороне и шариками, обозначающими вершины.

Учёные пока не смогли однозначно определить функцию этих объектов. Первоначально считалось, что это своеобразные игрушки, однако позднее их отнесли к предметам культа, символизирующим устройство Вселенной.

Или Земли, согласно теории, последовательно выдвигаемой с XIX века мировыми физиками, в том числе и российскими.

Впервые о том, что наша планета представляет собой кристалл додекаэдрической формы, заговорили французский математик Пуанкаре и геолог-исследователь де Бемон. Они утверждали, что земная кора, словно футбольный мяч, состоит из 12 правильных пятиугольников, в местах соединения которых, располагаются аномальные зоны и планетарные силовые поля.

В 1920-х годах идею французских коллег подхватил русский физик Степан Кислицын. Он пошёл ещё дальше, заявив, что планета не остаётся в стабильном состоянии, она растёт, из додекаэдра постепенно трансформируясь в икосаэдр.

Учёный разработал модели подобных изменений, обозначив узлы гигантской кристаллической сетки, где, по его мнению, располагались месторождения полезных ископаемых: угля, нефти, газа и так далее.

В 1928 году Кислицын, опираясь на свои исследования, указал на поверхности земного шара 12 алмазоносных центров, из которых 7 к настоящему времени находятся в активной разработке.

Идеи кристаллического строения планеты продолжают развиваться в XXI веке. Согласно последней гипотезе, подобная структура свойственна всем живым организмам, не только космическим телам, но и человеку. Тем интереснее будет собирать додекаэдр-оригами, чувствуя свою сопричастность к великим тайнам Вселенной.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.